

Three Bond Technical News Issued October 1, 1983

4

Coating Devices of Liquid Materials and Applicators of Liquid Gaskets to Joint Surface

CONTENTS

Introduction 2 1. Types and Characteristics of Liquid Gaskets 3 2. Classification and Features of Coating Devices 3-4 3. Tracing Method 5 3-1 Construction of Tracing Type Coater 5 3-2 Classification and Comparison of Nozzle Drive Methods 6-7 3-3 Classification and Features of Feeding Method 7-9 3-4 Classification and Features of Valve 9-10 3-5 Classification and Features of Optional Components 11 4. Screening Method 12 4-1 Construction of Screening Type Coater 12 4-2 Standard Specifications for Screening Type Coater 12 5. Stamping Method 13 5-1 Construction of Stamping Type Coater 13 5-2 General Specifications for Stamping Type Coater 13 6. Examples of Coater Application 14 R & D News: THREE BOND Research Laboratory Completed 16

Introduction

As the independent application of liquid gasket is popularized, the mechanization of its coating has been increasingly demanded from various sectors of industries.

The conventional liquid gaskets, which are applied in combination with solid gaskets as an auxiliary means, are mostly of low viscosity type, and hence, can readily be applied manually by using a simple tool such as brush, spatula or roller.

However, liquid gaskets to be used independently require sealing capacity and initial pressure resistance by extension of film, and are mostly of high viscosity type. It is extremely difficult to apply such liquid gaskets manually, resulting in poor productivity. Accordingly, it has been urgently desired in these days to develop an efficient coating device, in order to mechanize the liquid gasket coating process in the mass production line. Whereas the mechanization of other assembling processes has been markedly advanced, that in this field is much delayed. Since liquid gaskets involve a great number of varieties with respect to their applications, such as the organic solvent base, aqueous base, anaerobic base, and silicone base, it is necessary to design the coating device in full consideration of properties of these viscous fluids. Moreover, if types of gasket material, applications, characteristics of the production line and user's intention are taken into consideration, it is inevitable to implement the coating device in highly diversified forms, giving not a standardized one but a number of specialized devices. Because the manufacture of varied kinds of products in small quantities fails to promise a successful business, there are very few manufactures specialized in this field.

Even in the U.S.A., where F.I.P.Gs (formed-in-place gaskets) using silicone-based liquid gaskets alone have been produced from earlier, only a few specialized manufacturers are operating actively, and it seems unlikely that the devices developed by them can be smoothly adopted to the mass production line in Japan.

The scarecity in comprehensive manufacturers of coating devices seems to cause delay in the mechanization. However, cost saving and improved sealing properties associated with the independent application of liquid gasket provide irrestible attraction, and many gasket users are urgently demanding the development of coating devices.

THREE BOND, who has been studying the coating technologies for ten odd years as a specialized manufacturer of liquid gasket material, presents below an outline of coating method for joint surfaces, so as to be helpful to the users.

1. Types and Characteristics of Liquid Gaskets

"Characteristics" covers not all of available data but only those relevant to designing coating devices.

Туре		Volatile		Reactive	
Characteristics		Organic solvent	Aqueous	Silicone	Anaerobic
Properties	Normal state	Viscous fluid	Viscous fluid	Paste	Paste
	Viscosity (c.p.s.)	2,000 - 10,000	2,000 - 20,000	50,000 - 300,000	40,000 - 200,000
Solidification	Causes	Evaporation of organic solvent	Evaporation of water	Reaction with humi- dity or moisture	Exclusion of oxygen
	Rate (after being left in air)	Film formed in $3 - 10$ min.	Film formed in $5 - 10$ min.	Film formed in 3 – 10 min.	Not solidified
Features	Features Feeding L.		Low viscosity, pneumatic, ditto. pressure tank		Non-fluidy, contact with metal prohibit- ed, cartridge tank
	Materials of contacting liquid gasket	Neither dissolved nor corroded by organic solvent Not corroded by water		Not permeable to water and air	Permeable to air
Dissolution of solidified gasket		Possible with organic solvent	Impossible	ditto.	ditto.
	Precipitation	Present, in some products	Present	None	None
Unhardened gasket cleaned by		Organic solvent	Water	Toluol	Organic solvent
	Abrasion of sliding part	Present in some products	None	Present in some products	None
Application Motorcycles Lower case, head cylinder (in co with solid gasket)		cylinder (in combination	Cylinder head	Crank case	
	Automobiles	Steering gear box, brake cover, transmission case		Oil pan, oil pump	Transmission case
	Others	Gas meter cover		Wash basin cabinet	Pump case

Table 1.

2. Classification and Features of Coating Devices

Liquid gasket may be applied to the joint surface either in point(s) or in line. Table 2 concerns the line application alone, because the point application may be regarded as a simplified form of the latter. Except for some special cases, the coating devices can be classified into three types given below.

Туре	Tracing	Tracing Screening	
General	Gasket material fed from a reservoir through a tube is delivered from a nozzle in the form of string. The nozzle is driven along a joint surface by some means so as to make a line application.	Gasket material is placed on a screen of which area other than patterns to be coated is masked, and squeezed on to a joint surface set below the screen through the latter by means of a spatula-like tools (squeegee).	A box-shaped drum is rotated in a liquid reservoir to form a gasket material film of fixed thickness on its top surface. The film is transferred to a joint surface applied to the top.
Features	Applicable to three-dimensional face, all types of gasket material usable, coating amount readily adjustable, mountable on an automatic line	High coating speed, high dimensional accuracy of pattern to be coated, thin film coating possible, mountable on an automatic line	High coating speed, not limited by complicated geometry or width of area to be coated, thin film coating possible, good maintenability
Applicable gasket material	Solvent, aqueous, silicone, anaerobic	Anaerobic	Solvent, aqueous

Table 2.

Type of automatic coating device	Nozzle drive method provides four types 1. Template type 2. Photoelectric tube type 3. Computer type 4. Disk type	Automatic driving of squeegee	Manual transfer with joint surface held by hand required. Semiautomatic
Types of manual coating device	 Hand-gun adapted to joint surface is driven manually. 1. Cartridge gun (Photo 1) 2. Cartridge tank with flow gun (Photo 2) 3. Pressure tank with pencil gun (Photo 3) 4. High pressure pump with flow gun (Photo 4) 	Squeegee driven manually	

Tracing type coater

Photo 1. Cartridge gun

Photo 3. Pressure tank with pencil gun

Photo 2. Cartridge tank with flow gun

Photo 4. High pressure pump with flow gun

3. Tracing Method

3-1 Construction of Tracing Type Coater

Sections	Standard components	Optional components
Main unit	- FrameCasters, levelling bolt	Safety cover, shutter, door
	- JigWork positioning pin, rough guide	Work or type detector
	- Covers	Work posture detector
	– Hose-hanging arm	Work loader and unloader
	- Nozzle soaking vessel	
Nozzle	– Template type	Template automatic selector
drive unit	(template, magnet roller, solenoid, universal arm, bevel gear,	-
	induction motor)	
	– Photoelectric tube type	
	(Photoelectric tube control unit, lamp, XY table with DC servo	
	motor, nozzle mounting arm)	
	– Computer type	
	(XYZ orthogonal table with DC servo motor, rotary encoder,	
	bellows-type dust cover)	
	– Disk type	
	(disk, spur gear, induction motor)	
Head unit	– Material on/off valve	Flow control valve
	– Nozzle block with nozzle	Shock sensor
	– Vertical nozzle shift	Nozzle cap
Matarial	D	Desides datastas
Material	- Reservoir	Kesidue detector
leeding unit	(Pressure tankpneumatic pressure regulator)	Material filter
	(Cartriage tankpheumatic pressure regulator)	Material filter
	(High pressure pump pneumatic pressure regulator,	Tank pressure regulator
	material can loader)	Surrer
	- Feeding tube	
	(for low pressure	
	(for high pressure	
Control		External memory system
Control	- Electric control	Constant voltage symply
unn	(Main control panel, auxiliary control panel)	Constant voltage suppry
	(Operation panel) (Starts and amorganess stop switch hav)	
	(Starts and emergency stop switch box)	
	(Prossure supply cock, three in one set)	
	(Pressure supply cock, infee-in-one set)	
	(Pressure switch)	
	(Solenoid valve)	

Table 3.

Fig. 1 Construction of tracing type coater

3-2 Classification and Comparison of Nozzle Drive Methods

Table 4.

			Template type	Photoelectric tube type	Computer type	Disk type
General remarks		narks	A magnet roller is driven along an iron template cut in compliance with a pattern to be coated. Gasket material is applied with a nozzle installed at the center of roller. Either outer or inner contour of template is used. (Photo 5)	A live drawing of pattern to be coated is drawn on a sheet of white paper and traced by a photoelectric tube. The resulting signal drives a servo motor installed on an XY table. Coating is made with a nozzle mounted on an arm fixed on the YX table. (Photo 6)	The surface of a work set at the coating position is traced with a nozzle tip so as to store data for moving between specified points. Coating on the work is made by playing back the stored data. (Photo 7)	Nozzle drive for circular arc coating only. A disk with a nozzle filled on its circumference is driven by a motor via gears. (Photo 8)
	Nozzl	e drive speed	Max. 4 m/min.	Max. 3 m/min.	Max. 12 m/min.	Max. 12 m/min.
	Partia	speed change	Impossible	Impossible	Possible	Impossible
		Minimum arc	6R	6R	5R	50R
	sn	Discontinuity	Impossible	Possible	Possible	Possible
suc	,0C	Inter section	Impossible	Impossible	Possible	Impossible
atio	Three-dimensional		Impossible	Impossible	Possible	Possible
ific			Impossible	Impossible	Possible	Impossible
)ec	сэ	Method	Plate change	Drawing change	Job No. call	Arm radium change
$\mathbf{S}_{\mathbf{F}}$	ten ing	Required time	5 min.	3 min.	5 sec.	3 min.
	Pat che	Туре	Not limited	Not limited	20 types (can be increased)	Not limited
	Accur	acy	±0.1mm	±0.1mm	±0.1mm	±0.1mm
	Nozzl	e coverage	Max. 300 x 500 mm	Max. 300 x 400 mm	Max.500 x 1000 mm	Max. 600 mmø
Fatures			High accuracy tracing, low cost, good maintenability	Patterns readily changeable, simul- taneous coating of many works possible, low cost.	High speed 3-dimen- sional coating possible, patterns readily changeable, coating conditions set flexibly	Simple and high reliability, low cost, good maintenability.
Applicatons		5	Cylinder head cover of motorcycle, FF transmission case and oil pan of automobile	Gas meter counter case, Transmission case of automobile, Condenser calking	Lower case of motor cycle, Buffle plate and oil pan of auto- mobile	Differential gear case, wheel drum fitting and wheel assembly of automobile

Tracing Method

Photo 5. Template type

Photo 6. Photoelectric tube type

Photo 7. Computer type

Photo 8. Disk type

3-3 Classification and Features of Feeding Method

The feeding unit which comes to contact with liquid is one of the most important parts in the coating device like the valve. If it is selected or handled wrongly, troubles may occur.

Reservoir		Pressure tank		Cart	Cartridge tank		High pressure pump	
Туре		Direct feed	Inner container	Plastic	Aluminium	Air pump	Power booster	
Illustra	ation	Fig. 2	Fig. 3	Fig. 4	Fig. 5	Phot	o 9	
Liquid		Low viscos	ity	High visco	sity	High viscos	ity	
		(10,000 c.p	.s. or less)	(10,000 - 3)	300,000 c.p.s.)	(10,000 - 30)	00,000 c.p.s.)	
		Solvent, aq	ueous	Silicone, an	naerobic	Solvent, sili	cone	
Contai	ner	20ℓ or less, s	hape not limited	330cc carti	ridge	$1\ell - 20\ell exe$	clusive can	
Pneum	atic pressure	0.5 - 7 kg/c	2 cm ²	1.0 - 4	1.0 - 6	1.5 - 5 kg/cm	m^2	
				kg/cm ²	kg/cm ²			
Liquid	pressure	Same as pneumatic pressure		Same as pneumatic pressure		Pneumatic pressure ×		
						pressure r	atio	
Features		Simple and easy to handle,		Light weight and compact,		Continuous	No pulsation	
		readily available,		mounted	on head for	delivery		
		tube cleaned readily		driving,		possible		
				low cost.		High press	ure available,	
						large conta	iner capacity,	
						low replacin	ig frequency	
Hose	Material	Nylon or teflon		Teflon		High pressure teflon +		
						SUS braid	ł	
	Tolerable pressure	30 – 70 kg/	cm ²	30 - 70 kg	/cm ²	200 kg/cm^2		
Length		5m or shorter		1m or shorter		5m or shorter		
Diameter 1/4" – 1		1/4" – 1/2"	1	1/4" – 1/2'	,	1/4" – 1/2"		
Distributer		Aluminium and brass		ditto.		d	itto.	
		When two individual r	Vhen two or more nozzles are used with a distributer, flow control valves for ndividual nozzles are required.				trol valves for	

Table 5.

Difference between Air Pump and Power Booster

Table 6.

Air pump	Power Booster		
Double action, continuous delivery	Single action, intermittent delivery		
Constantly pressurized	Pressurized in response to delivery signal		
Pulsation at upper and lower dead points	No pulsation		
To be used as supply source for flow gun	To be used as supply source for automatic coating device using a nozzle drive unit		

Fig. 2 Direct feed type pressure tank

Fig. 3 Inner container type pressure tank

Fig. 5 Aluminium cartridge tank

Photo 9. Power booster with residue detector

3-4 Classification and Features of Valve

The valve to control the delivery of liquid gasket is one of most important components of the coating device. Generally three types of valve described below are used.

Table 7.

Туре	Pinch valve	Needle valve	Poppet valve		
Illustration	Fig. 6	Fig. 7 Fig. 8			
Applicable	Low viscosity (10,000 c.p.s.)	Low to high viscosity (300,000 c.p.s.) solvent, aqueous, silicone			
liquid	solvent, aqueous, anaerobic	2			
Tolerable	5 kg/cm^2 or less	160 kg/cm ² or less	120 kg/cm ² or less		
pressure	5 kg/em of less	Special version for high pressure a	vailable		
Operation	Tube pinched with a tip roller	With included double action air cyl	linder		
	of single or double action	Delivering by rod with drawal	Delivering by rod extrusion		
	air cylinder.				
Durability	100,000 times pinching	300,000 strokes (Packing of sliding	g part to be tightened)		
Delivery	Tube throttled by included flow	A diustment of tube resistance at va	lve seat through stroke control		
adjustment	control valve	Augustinent of tube resistance at va	ive seat through stroke control		
Valve seat	Thin-walled teflon tube	Teflon block	Teflon ring		
material	Thin walled terion tube	Tenon block	Tenion Ting		
Features	Comes to contact with liquid	Valve seat sealed reliably by	When threading occurs, it can be		
	only at teflon tube, suited for	liquid pressure, suited for high	withdrawn to nozzle by suck-		
	anaerobic liquid which reacts	viscosity liquid.	back effect.		
	with metal.	Large volume delivery possible	Limited by orifice diameter.		
	Good delivery response,	with enlarged orifice	Suited for small volume delivery		
	inside cleaned readily.				
Precautions	Tube life limited at specified	Be careful for leakage at packing	of sliding part, because of being		
for operation	number of pinches. If changed	operated at high pressure. If	any leakage occurs, re-tighten		
	after being broken, cleaning	immediately. Some grade of liqui	id gasket may accelerate wear of		
	takes time and labor. It is	sliding part.			
	necessary to check the number				
	of pinches with a counter.				
	If a speed control (throttle) is provided at each art of operating air cylinder to make operating speed of valve				
	variable, delivery at the beginning and end of coating bead can be adjusted to provide coating at uniform				
	thickness.				

Fig. 6 Pinch valve

Fig.7 Needle valve

Fig. 8 Poppet valve

Photo. 10 Poppet valve

3-5 Classification and Features of Optional Components

Optional components described below are used for improving the operability of coating device. But they are not always necessary, and their adoption should be decided in consideration of application purpose and cost.

Section	Item	Description and features
Main unit	Safety shutter, safety	To be provided for securing the safety of operators at the nozzle drive unit and
frame	door, safety cover	active parts of loader and unloader. The adoption is decided in compliance with users' safety standards
	Work detector	The presence of work in jig is detected by a sensor such as proximity switch or
		photoelectric switch.
		In the absence of work, neither loading nor delivering is made.
	Work type detector	Work type is detected, and the pattern for nozzle drive unit is selected
	Westernet	depending upon the work type signal.
	detector	A sensor to check whether or not the work is set at the jig in the proper positire. Mostly, horizontal posture is checked for preventing collision with the pozzle
	Work loader and	To be provided for the purpose of preventing a part of operator's body from
	unloader	entering the nozzle drive range or facilitating loading and unloading of work.
		Generally moves horizontally or vertically. Sometimes, an automatic remover
N. 1.	A toward in	to empty the jig is provided.
Nozzle	Automatic	while the template type unit is inferior with respect to pattern changing, some patterns may be changed automatically, by one of three methods; sliding two
unve unit	template enangel	templates, inverting two templates, or adding to standard template.
Head unit	Flow control valve	Adjustment of valve stroke provides only limited control of flow. The flow
		control valve tolerates high pressure, is readily set at the liquid inlet of valve
	<u> </u>	owing its light weight and compact size to be easily adjusted with dial operation.
	Shock sensor	It is shut down the nozzle drive unit automatically when the nozzle interferes
	Nozzle can	To cover the nozzle tip when the coating device is put to a long pause so as to
	rozzie eup	prevent liquid at the nozzle from hardening. Sometimes, solvent may be put
		into the cap. It should be noted that if the device is put to operation with the
		nozzle tip capped, the nozzle may come to interfere with work or other objects.
Feeding	Residue detector	When liquid content is insufficient, the detector gives alarm with lamp or a
unn		limit switch is used for the high pressure nump
	Liquid regulator	To buffer pulsation so as to prevent pressure change at the primary side from
	1 6	being transmitted to the secondary side, when feeding silicone-based liquid
		with a high pressure pump. The regulator can be used for adjusting delivery.
		However, as the smaller orifice is readily blocked by dust or solidified liquid,
	Liquid filter	To filter out foreign objects and solidified liquid out of liquid with SUS wire
		net mounted at the pump outlet, when feeding silicone-based liquid with a high
		pressure pump. It is necessary to clean the filter frequently.
	Tank pressure	The viscosity of viscous fluid varies depending upon the temperature, changing
	regulator	fluid delivery despite constant working pressure. Particularly, in the winter
		season, the temperature varies at different working periods with the delivery varied accordingly. The regulator is to change the working pressure of liquid
		supply automatically in response to change in the room temperature for
		reducing the fluctuation in delivery.
	Stirrer	When precipitation may occur in liquid contained in the pressure tank, liquid is
		to be delivered while being stirred. Generally, liquid is agitated by turning the
Control	External memory	stirrer blade in the tank by an air motor mounted at the tank lid.
unit	External memory	added to the control panel so as to increase the momory capacity for patterns
		Either cassette tape or bubble cassette memory is used.
	Constant voltage	When a nozzle drive unit of computer type is used, a constant voltage supply is
	supply	to be used for stabilizing the primary side voltage, so as to eliminate variation
		on the secondary side. This also prevents secondary voltage from being cut at the time of momentary power failure
		the time of momentary power famule.

Table 8.

4. Screening Method

The method of screen printing is applied to coating of liquid gasket. This method is applicable only with liquid which does not solidify after having been left for a long period in air. It is used, therefore, exclusively for anaerobic liquid gasket.

4-1 Construction of Screening Type Coater

See Fig. 9 and Photo. 11.

4-2 Standard Specifications for Screening Type Coater

Table 9.

Items	Standard specifications
Power requirements	200V, 3 <i>ø</i> , 50/60Hz, 10A
Pneumatic pressure	$4-6 \text{ kg/cm}^2$
Maximum screen frame dimensions	1,000 x 700 mm
Maximum screen dimensions	900 x 600 mm
Maximum coating area	600 x 400 mm
Squeegee drive speed	170 - 115 mm/sec (variable with belt tension)
Squeegee material	Urethane rubber
Squeegee pressure control	Pneumatic with air cylinder
Coating time	10 - 12 sec (including time for loading and unloading)
Screen materials	Nylon-tetron mixed
Screen durability	10,000 operations (dependent upon work geometry)
Screen thickness	0.5 – 1.0 mm
Automatic liquid feeding	Pressurized feeding with cartridge tank (capacity 500cc)
Others	Some work geometry may require a screen protecting means.

Fig. 9 Construction of screening type coater

Screening Type Coater

Photo 11. Screening type coater

5. Stamping Method

A work is pressed against uniform coating of liquid gasket formed on the top face of a box-shaped drum so as to coat the work by transfer. This method is suited for creating thin-film liquid gasket of organic solvent or aqueous base on a smooth plane of complicated geometry.

Table 10.

5-1 Construction of Stamping Type Coater

See Fig. 10 and Photo 12.

5-2 General specifications for Stamping Type Coater

Items	Standard specifications		
Power requirements	200V, 3 <i>ø</i> , 50/60Hz, 10A		
Maximum drum face dimensions	400 x 500 mm, there are several versions of different drum face dimensions		
Maximum tank capacity	90ℓ (minimum liquid requirement 15ℓ)		
Drum driving	Electric motor (anti-explosion specifications required for solvent-based liquid)		
Drum division	4-division Geneva		
Coating face holding time	Max. 12 sec - min. 4 sec, continuously variable		
Dividing time	Max. 4 sec - min. 1.5 sec, continuously variable		
Thickness of coated film	1.8 – 2.3 mm, adjusted with thickness of collars at both ends of film-making rod		
Thickness of transferred film	0.01 - 0.10 mm, variable depending upon nature and viscosity of liquid		
Others	 If work face includes a convex area, a concave area is to be provided on the drum face so as to ensure close fitting. A shutter means is to be provided for preventing solvent from evaporating. When solvent-based liquid is used, an exhaust duct is to be provided. 		

Fig. 10 Construction of stamping type coater

Stamping Type Coater

Photo 12. Stamping type coater with a shutter

6. Examples of Coater Application

While the coating devices mentioned in the above may be used for coating liquid materials other than liquid gasket, examples of their applications with liquid gasket alone described below.

Coating method	Driving method	Material	Application		
Tracing	Template	Anaerobic	Hydraulic control unit		
		Silicone	Transmission case, FF transmission case, Flywheel cover,		
			Oil pump case, Rear oil retainer, Oil pan,		
			Thermo case, Transmission rear cover, Brake cover & shim,		
			Water outlet cover, Rear cover,		
			OHC bearing case, Cylinder head cover, Snow-mobile crank case,		
			Corrugated plate of canteen, Room heater blower		
	Photo-	Organic solvent	Transmission case, Condenser caulking		
	electric	Silicone	Gas motor counter case		
	tube	Sincone			
	Computer	Aqueous	Lower case, Upper case (Motorcycle)		
		Organic solvent	Asbestos gasket, Lower case		
		Silicone	Vertical transmission, Buffle plate, Cylinder block,		
			Oil pan plate, Oil pan, Transmission of light automobile		
	L		Oil pan for agricultural machine, Gear case, Wash basin cabinet		
	Disk	Aqueous	Steering		
		Silicone	Differential gear case for automobile, truck and light automobile		
Screening		Anaerobic	Transmission case for automobile		
Stamping		Aqueous	Lower case for motorcycle Crank case for automobile, Pump case		
		Organic solvent	Lower case for automobile, Crank case for motorcycle,		
Transmission case for automobile, Transmission case for agricu			Transmission case for automobile, Transmission case for agricultural machine,		
			Outboard engine cover. Gas meter case		

Table 11.

R & D News

THREE BOND Research Laboratory Completed.

The Research Laboratory which has been in the way of construction at the plot of THREE BOND Co., Ltd. for the purpose of reinforcing the efforts for research and development is completed.

The building is made from ferroconcrete with 3 stories above and 1 story under ground, comprising total floor area about $4,500m^2$, which is nearly three times as extensive as the previous research space. The new research facilities involve an engine test room with fully sound-proof construction, an impulse fatigue testing machine and modern analytic instruments.

In addition to the research and development of new products and technical application systems, the Research Laboratory has some auxiliary functions such as the conduction of commissioned or cooperative studies with outside research organizations such as users and universities, technical training of domestic and overseas personnels, and exhibition of production process with plant models for improving users' understanding of quality and performance of our products. The Laboratory is operated through a new system so that it can be utilized 24 hours a day and 365 days a year.

It is recommended to visit the Laboratory at Hachioji whenever you happen to come to Tokyo to utilize its service. Every personnel of the Laboratory would welcome you.

"GARDEN OF CREATION" in the THREE BOND Research Laboratory

We designated this space as "Garden of Creation," intending to symbolically represent the ideal state of mind required for researchers through its configuration.

The invention contributing to the community is derived from the creation, and we believe that indispensable elements for creation are theory, flash of wit and passion. Lattice Wall – (theory) Well-organized theory is represented by the regular

	geometrical pattern of lattice.
Pebbles – (flash of wit)	Pebbles laid on the ground represent numerous
	flashes of wit. Each of pebbles has different shape
	causing free thinking in the part of on-lookers.
Three stones – (passion)	Three stones represent;
	•spring of love •spring of prosperity •spring of
	peace
	They represents together inexhaustible passion like
	gushing spring.
	Of three stone, two have one each of faces polished
	so that a triangle of light is formed with the
	remaining one "Spring of Peace" at the anex
	deniating one, Spring of Federe, at the apex,
	depicting infinite passion linked up with a beam of
	light around the peace.
Illumination – (unexpectedness)	Lighting an object has an effect of deriving
· • • •	unexpectedness from it.
	1

